博客
关于我
人工智能、深度学习、机器学习常见面试题141~160
阅读量:493 次
发布时间:2019-03-06

本文共 482 字,大约阅读时间需要 1 分钟。

随机森林算法中,袋外数据(OOB)是一项重要的技术概念。随机森林通过Bagging方法结合多个决策树模型来提升预测性能。在Bagging方法中,Bootstrap每次抽取的样本数量约为1313个,这些样本不会出现在最终的训练集中。这些未被使用的样本被称为袋外数据OOB,其主要用途是替代传统的测试集误差估计方法。

袋外数据的计算方法如下:在随机森林已经生成完毕后,使用袋外数据对模型性能进行测试。将袋外数据作为输入,带入之前生成的随机森林分类器中,分类器会输出相应的分类结果。由于袋外数据的真实标签已知,可以将分类器的预测结果与真实标签进行对比,统计分类错误的数量记为X。袋外数据误差的计算公式为X/O,其中O是袋外数据的总数。这种方法已经被证明是无偏估计,因此在随机森林算法中无需额外的交叉验证或单独测试集来获取测试集误差的无偏估计。

袋外数据的优势在于其无偏性,以及能够更好地反映模型在实际应用中的性能。但其也存在一些不足之处:首先,计算袋外数据需要额外的计算资源,其次,袋外数据的生成依赖于随机森林的具体实现。因此,在实际应用中需要根据具体需求权衡其优缺点。

转载地址:http://tooyz.baihongyu.com/

你可能感兴趣的文章
MySQL 有什么优点?
查看>>
mysql 权限整理记录
查看>>
mysql 权限登录问题:ERROR 1045 (28000): Access denied for user ‘root‘@‘localhost‘ (using password: YES)
查看>>
MYSQL 查看最大连接数和修改最大连接数
查看>>
MySQL 查看有哪些表
查看>>
mysql 查看锁_阿里/美团/字节面试官必问的Mysql锁机制,你真的明白吗
查看>>
MySql 查询以逗号分隔的字符串的方法(正则)
查看>>
MySQL 查询优化:提速查询效率的13大秘籍(避免使用SELECT 、分页查询的优化、合理使用连接、子查询的优化)(上)
查看>>
mysql 查询数据库所有表的字段信息
查看>>
【Java基础】什么是面向对象?
查看>>
mysql 查询,正数降序排序,负数升序排序
查看>>
MySQL 树形结构 根据指定节点 获取其下属的所有子节点(包含路径上的枝干节点和叶子节点)...
查看>>
mysql 死锁 Deadlock found when trying to get lock; try restarting transaction
查看>>
mysql 死锁(先delete 后insert)日志分析
查看>>
MySQL 死锁了,怎么办?
查看>>
MySQL 深度分页性能急剧下降,该如何优化?
查看>>
MySQL 深度分页性能急剧下降,该如何优化?
查看>>
MySQL 添加列,修改列,删除列
查看>>
mysql 添加索引
查看>>
MySQL 添加索引,删除索引及其用法
查看>>