博客
关于我
人工智能、深度学习、机器学习常见面试题141~160
阅读量:493 次
发布时间:2019-03-06

本文共 482 字,大约阅读时间需要 1 分钟。

随机森林算法中,袋外数据(OOB)是一项重要的技术概念。随机森林通过Bagging方法结合多个决策树模型来提升预测性能。在Bagging方法中,Bootstrap每次抽取的样本数量约为1313个,这些样本不会出现在最终的训练集中。这些未被使用的样本被称为袋外数据OOB,其主要用途是替代传统的测试集误差估计方法。

袋外数据的计算方法如下:在随机森林已经生成完毕后,使用袋外数据对模型性能进行测试。将袋外数据作为输入,带入之前生成的随机森林分类器中,分类器会输出相应的分类结果。由于袋外数据的真实标签已知,可以将分类器的预测结果与真实标签进行对比,统计分类错误的数量记为X。袋外数据误差的计算公式为X/O,其中O是袋外数据的总数。这种方法已经被证明是无偏估计,因此在随机森林算法中无需额外的交叉验证或单独测试集来获取测试集误差的无偏估计。

袋外数据的优势在于其无偏性,以及能够更好地反映模型在实际应用中的性能。但其也存在一些不足之处:首先,计算袋外数据需要额外的计算资源,其次,袋外数据的生成依赖于随机森林的具体实现。因此,在实际应用中需要根据具体需求权衡其优缺点。

转载地址:http://tooyz.baihongyu.com/

你可能感兴趣的文章
Netty客户端断线重连实现及问题思考
查看>>
Netty工作笔记0001---Netty介绍
查看>>
Netty工作笔记0003---IO模型-BIO-Java原生IO
查看>>
Netty工作笔记0005---NIO介绍说明
查看>>
Netty工作笔记0006---NIO的Buffer说明
查看>>
Netty工作笔记0007---NIO的三大核心组件关系
查看>>
Netty工作笔记0008---NIO的Buffer的机制及子类
查看>>
Netty工作笔记0009---Channel基本介绍
查看>>
Netty工作笔记0010---Channel应用案例1
查看>>
Netty工作笔记0011---Channel应用案例2
查看>>
Netty工作笔记0012---Channel应用案例3
查看>>
Netty工作笔记0013---Channel应用案例4Copy图片
查看>>
Netty工作笔记0014---Buffer类型化和只读
查看>>
Netty工作笔记0015---MappedByteBuffer使用
查看>>
Netty工作笔记0016---Buffer的分散和聚合
查看>>
Netty工作笔记0018---Selector介绍和原理
查看>>
Netty工作笔记0019---Selector API介绍
查看>>
Netty工作笔记0020---Selectionkey在NIO体系
查看>>
Netty工作笔记0021---NIO编写,快速入门---编写服务器
查看>>
Netty工作笔记0022---NIO快速入门--编写客户端
查看>>